FP1 Trigonometry Questions

3	Find t	the	general	solution,	in	degrees,	for	the	e equation	
---	--------	-----	---------	-----------	----	----------	-----	-----	------------	--

$$\sin\left(4x+10^{\circ}\right)=\sin 50^{\circ}$$

(5 marks)

4 Find, in radians, the general solution of the equation

$$\cos 3x = \frac{\sqrt{3}}{2}$$

giving your answers in terms of π .

(5 marks)

7 The function f is defined for all real numbers by

$$f(x) = \sin\left(x + \frac{\pi}{6}\right)$$

(a) Find the general solution of the equation f(x) = 0.

(3 marks)

6 Find the general solution of the equation

$$\sin\left(2x - \frac{\pi}{2}\right) = \frac{\sqrt{3}}{2}$$

giving your answer in terms of π .

(6 marks)

FP1 Trigonometry Answers

3	One solution is $x = 10^{\circ}$	B1		PI by general formula								
	Use of $\sin 130^\circ = \sin 50^\circ$	M1		OE								
	Second solution is $x = 30^{\circ}$	A1		OE								
	Introduction of $90n^{\circ}$, or $360n^{\circ}$ or $180n^{\circ}$	M1		Or $\pi n/2$ or $2\pi n$ or πn								
	GS $(10+90n)^{\circ}$, $(30+90n)^{\circ}$	A1√	5	OE; ft one numerical error or omission of								
	ds (10+90n) ,(30+90n)	7117		2nd soln								
	Tot	al	5	210 3011								
4	$\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$ stated or used	B1		Condone decimals and/or degrees until final mark								
	Appropriate use of ±	B1										
	Introduction of $2n\pi$	M1										
	Division by 3	M1		Of $\alpha + kn\pi$ or $\pm \alpha + kn\pi$								
	$x = \pm \frac{\pi}{18} + \frac{2}{3}n\pi$	A1	5									
	Tota	ıl	5									
7(Particular solution, eg $-\frac{\pi}{6}$ or $\frac{5\pi}{6}$	B1		Degrees or decimals penalised in 3rd mark only								
	Introduction of $n\pi$ or $2n\pi$	M1		,								
	GS $x = -\frac{\pi}{6} + n\pi$	A1F	3	OE(accept unsimplified);								
	6			ft incorrect first solution								
6	One value of $2x - \frac{\pi}{2}$ is $\frac{\pi}{3}$	В1		OE (PI); degrees/decimals penalised in 6th mark only								
	Another value is $\pi - \frac{\pi}{3} = \frac{2\pi}{3}$	B1F		OE (PI); ft wrong first value								
	Introduction of $2n\pi$ or $n\pi$	M1										
	General solution for x	m1										
	GS $x = \frac{5\pi}{12} + n\pi$ or $x = \frac{7\pi}{12} + n\pi$	A2,1	6	OE; A1 if one part correct								
	Tota	1	6									